Apr 04 2011

California Prius woes: how not to catalyze the economy

Category: economy,environmentharmonicminer @ 9:13 pm

I drive a Toyota Prius.  It needs a new catalytic converter.  If I lived in any state but California, I could buy one for around $350, and pay maybe $100-200 to have it installed.  For example, here is a website selling the item, for any state but California (notice, it says “no sales to CA”).

Since I live in California, it will cost me $2200 to have a new catalytic converter installed, because it is a dealer only item, and since Toyota has no competition for the part, they have a legal monopoly on it…  which means they can charge whatever they want, and I really have no choice.

But wait, you say, aren’t monopolies illegal in the USA?  The answer, of course, is that monopolies have mostly only flourished where the government enforces them in some way (it’s called crony capitalism, and one of the earliest examples was the building of railroads in the 19th century, based on monopolistic leases from the federal government), and California, as we’ve mentioned before, is a state dedicated to the proposition that most businesses should be driven from the state, and all paying customers should be punished for being customers, or at least for having sufficient funds to be customers.

Call it another example of why California is going the way of the dodo.  And, as a state government, it has about the same IQ.

It would be cheaper for me to drive the car to Arizona and have it repaired there, then drive it home.

I asked the service manager at Toyota why the catalytic converter costs so much.  He said it “has precious metal in it.”  Maybe, if I get a new one, I’ll sell it and retire.

This is emblematic of California’s ridiculous posture on so many issues, where it is willing to pay (AND force the citizens to pay) 10 times as much as some other states, for a tiny increment of “improvement” in the quality of the thing purchased.  Is it possible this catalytic converter is 8-10 times as good as other catalytic converters on other cars?  Really?

It is a government imposed monopoly, and the sky is the limit on how much Toyota can charge, because they are literally the only legal game in town, so says CARB.

 

 

 

 


Apr 04 2011

Do enviro-greens believe in a free lunch?

Category: societyharmonicminer @ 11:08 am

This is from New Scientist. I’m not sure how long the link will be good, so I copied the whole thing here for your perusal.

Wind and wave energies are not renewable after all

 

The sun is our only truly renewable energy source

Build enough wind farms to replace fossil fuels and we could do as much damage to the climate as greenhouse global warming

WITNESS a howling gale or an ocean storm, and it’s hard to believe that humans could make a dent in the awesome natural forces that created them. Yet that is the provocative suggestion of one physicist who has done the sums.

He concludes that it is a mistake to assume that energy sources like wind and waves are truly renewable. Build enough wind farms to replace fossil fuels, he says, and we could seriously deplete the energy available in the atmosphere, with consequences as dire as severe climate change.

Axel Kleidon of the Max Planck Institute for Biogeochemistry in Jena, Germany, says that efforts to satisfy a large proportion of our energy needs from the wind and waves will sap a significant proportion of the usable energy available from the sun. In effect, he says, we will be depleting green energy sources. His logic rests on the laws of thermodynamics, which point inescapably to the fact that only a fraction of the solar energy reaching Earth can be exploited to generate energy we can use.

When energy from the sun reaches our atmosphere, some of it drives the winds and ocean currents, and evaporates water from the ground, raising it high into the air. Much of the rest is dissipated as heat, which we cannot harness.

At present, humans use only about 1 part in 10,000 of the total energy that comes to Earth from the sun. But this ratio is misleading, Kleidon says. Instead, we should be looking at how much useful energy – called “free” energy in the parlance of thermodynamics – is available from the global system, and our impact on that.

Humans currently use energy at the rate of 47 terawatts (TW) or trillions of watts, mostly by burning fossil fuels and harvesting farmed plants, Kleidon calculates in a paper to be published in Philosophical Transactions of the Royal Society. This corresponds to roughly 5 to 10 per cent of the free energy generated by the global system.

“It’s hard to put a precise number on the fraction,” he says, “but we certainly use more of the free energy than [is used by] all geological processes.” In other words, we have a greater effect on Earth’s energy balance than all the earthquakes, volcanoes and tectonic plate movements put together.

Radical as his thesis sounds, it is being taken seriously. “Kleidon is at the forefront of a new wave of research, and the potential prize is huge,” says Peter Cox, who studies climate system dynamics at the University of Exeter, UK. “A theory of the thermodynamics of the Earth system could help us understand the constraints on humankind’s sustainable use of resources.” Indeed, Kleidon’s calculations have profound implications for attempts to transform our energy supply.

Of the 47 TW of energy that we use, about 17 TW comes from burning fossil fuels. So to replace this, we would need to build enough sustainable energy installations to generate at least 17 TW. And because no technology can ever be perfectly efficient, some of the free energy harnessed by wind and wave generators will be lost as heat. So by setting up wind and wave farms, we convert part of the sun’s useful energy into unusable heat.

“Large-scale exploitation of wind energy will inevitably leave an imprint in the atmosphere,” says Kleidon. “Because we use so much free energy, and more every year, we’ll deplete the reservoir of energy.” He says this would probably show up first in wind farms themselves, where the gains expected from massive facilities just won’t pan out as the energy of the Earth system is depleted.

Using a model of global circulation, Kleidon found that the amount of energy which we can expect to harness from the wind is reduced by a factor of 100 if you take into account the depletion of free energy by wind farms. It remains theoretically possible to extract up to 70 TW globally, but doing so would have serious consequences.

Although the winds will not die, sucking that much energy out of the atmosphere in Kleidon’s model changed precipitation, turbulence and the amount of solar radiation reaching the Earth’s surface. The magnitude of the changes was comparable to the changes to the climate caused by doubling atmospheric concentrations of carbon dioxide (Earth System Dynamics, DOI: 10.5194/esd-2-1-2011).

“This is an intriguing point of view and potentially very important,” says meteorologist Maarten Ambaum of the University of Reading, UK. “Human consumption of energy is substantial when compared to free energy production in the Earth system. If we don’t think in terms of free energy, we may be a bit misled by the potential for using natural energy resources.”

This by no means spells the end for renewable energy, however. Photosynthesis also generates free energy, but without producing waste heat. Increasing the fraction of the Earth covered by light-harvesting vegetation – for example, through projects aimed at “greening the deserts” – would mean more free energy would get stored. Photovoltaic solar cells can also increase the amount of free energy gathered from incoming radiation, though there are still major obstacles to doing this sustainably (see “Is solar electricity the answer?”).

In any event, says Kleidon, we are going to need to think about these fundamental principles much more clearly than we have in the past. “We have a hard time convincing engineers working on wind power that the ultimate limitation isn’t how efficient an engine or wind farm is, but how much useful energy nature can generate.” As Kleidon sees it, the idea that we can harvest unlimited amounts of renewable energy from our environment is as much of a fantasy as a perpetual motion machine.

Is solar electricity the answer?

A solar energy industry large enough to make a real impact will require cheap and efficient solar cells. Unfortunately, many of the most efficient of today’s thin-film solar cells require rare elements such as indium and tellurium, whose global supplies could be depleted within decades.

For photovoltaic technology to be sustainable, it will have to be based on cheaper and more readily available materials such as zinc and copper, says Kasturi Chopra of the Indian Institute of Technology, New Delhi.

Researchers at IBM showed last year that they could produce solar cells from these elements along with tin, sulphur and the relatively rare element selenium. These “kesterite” cells already have an efficiency comparable with commercially competitive cells, and it may one day be possible to do without the selenium.

Even if solar cells like this are eventually built and put to work, they will still contribute to global warming. That is because they convert only a small fraction of the light that hits them, and absorb most of the rest, converting it to heat that spills into the environment. Sustainable solar energy may therefore require cells that reflect the light they cannot use.

TANSTAAFL